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Figure 1: Illustration of inputting “o” after “hell” already entered. (a)(b) On a traditional screen-reader keyboard, the user often 
touches at a wrong location and performs a calibration to the intended key, which is time-consuming. (c) VIPBoard predicts 
the intended character “o” and adapts the keyboard layout, which removes the calibration phase. (d) Even if the prediction is 
wrong, the user can still input other keys (e.g., “P”) by moving the fnger on the new layout. 

ABSTRACT 

Modern touchscreen keyboards are all powered by the word-
level auto-correction ability to handle input errors. Unfortu-
nately, visually impaired users are deprived of such beneft 
because a screen-reader keyboard ofers only character-level 
input and provides no correction ability. In this paper, we 
present VIPBoard, a smart keyboard for visually impaired 
people, which aims at improving the underlying keyboard al-
gorithm without altering the current input interaction. Upon 
each tap, VIPBoard predicts the probability of each key con-
sidering both touch location and language model, and reads 
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the most likely key, which saves the calibration time when 
the touchdown point misses the target key. Meanwhile, the 
keyboard layout automatically scales according to users’ 
touch point location, which enables them to select other 
keys easily. A user study shows that compared with the cur-
rent keyboard technique, VIPBoard can reduce touch error 
rate by 63.0% and increase text entry speed by 12.6%. 

CCS CONCEPTS 

• Human-centered computing → Text input; Accessibil-
ity technologies; 

KEYWORDS 

Visually Impaired; Text Entry; Smartphone; Auto-correction 

ACM Reference Format: 
Weinan Shi, Chun Yu, Shuyi Fan, Feng Wang, Tong Wang, Xin 
Yi, Xiaojun Bi, Yuanchun Shi. 2019. VIPBoard: Improving Screen-
Reader Keyboard for Visually Impaired People with Character-Level 
Auto Correction. In CHI Conference on Human Factors in Computing 
Systems Proceedings (CHI 2019), May 4–9, 2019, Glasgow, Scotland 
UK. ACM, New York, NY, USA, 12 pages. https://doi.org/10.1145/ 
3290605.3300747 

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 517 Page 1

https://doi.org/10.1145/3290605.3300747
https://doi.org/10.1145/3290605.3300747
https://doi.org/10.1145/3290605.3300747
mailto:permissions@acm.org
mailto:xjunbi@gmail.com


1 INTRODUCTION 

In the modern mobile computing era, smartphones are as 
indispensable to blind or visually impaired (BVI) people as 
they are to sighted people. However, there exist a number of 
interaction obstacles preventing BVI users from fully enjoy-
ing the benefts of mobile computing. One of them is entering 
text. 

Smartphone text entry is notoriously challenging, even for 
sighted users: it is difcult to precisely select a small intended 
key with input fnger. Fortunately, almost all the modern 
touchscreen keyboards for sighted users are so-called smart 
keyboards, which are enhanced with the word-level auto-
correction ability. After a user types a word delimiter (e.g., 
space), the keyboard will correct the input literal string into 
a word in the dictionary, based on the language context and 
spatial touch locations. 
Unfortunately, BVI users are deprived from such bene-

fts and entering text remains extremely challenging. The 
main reason is that the existing word-level auto-correction 
keyboard does not suit the typing behavior of BVI users. 
Unlike sighted users who can ignore the intermediate letter 
errors and let the auto-correction correct them, with a screen 
reader (e.g., TalkBack on Android and VoiceOver on iOS) a 
BVI user enters a word letter by letter and will not proceed 
to the next letter until the current one is correctly entered 
and confrmed. To enter a specifc letter, the user frst locates 
the intended key by dragging fnger on the keyboard, and 
then lifts the fnger up (or double taps) to confrm the letter 
once it is reached. They need to assure that each letter is 
correctly entered because 1) this could avoid the high cost of 
correcting errors afterwards [9]; 2) audio feedback is more 
salient and noticeable than visual feedback if the input is 
wrong, which prevents BVI users from ignoring them. As 
a result, the screen-reader keyboard is not equipped with 
word-level auto-correction power and BVI users sufer from 
low text entry speed (less than 5 WPM [11, 32]). 

We present VIPBoard, a smart screen-reader keyboard that 
brings auto-correction ability to BVI users without altering 
their input behavior. VIPBoard features in two mechanisms. 
First, it predicts the most probable intended character based 
on a language model and fnger location, and automatically 
ofsets the keyboard to make the predicted letter beneath 
the fnger. Thus, users do not need to move their fnger to 
correct the input. This saves the time and efort. Second, 
the keyboard layout is re-formed to guarantee that all keys 
can be accessed by moving the fnger in case the predicted 
character is incorrect and the keyboard is ofset inappropri-
ately. This provides a consistent user experience as typing 
on a traditional non-smart keyboard, which minimizes the 
learning cost. The beneft of VIPBoard builds on the fact that 
for most of the times, the prediction is correct. 

To evaluate the performance of VIPBoard, we conducted 
a user study with 14 visually impaired users. We compared 
VIPBoard with a traditional screen-reader keyboard (e.g., by 
TalkBack and VoiceOver). Results showed that VIPBoard re-
duced the touch error rate by 63.0% and increased the text 
entry speed by 12.6%. Users also showed strong preference 
of VIPBoard over the traditional keyboard. During the study, 
we did not inform the participants that diferent keyboards 
were used. In such a case, most users (12 out of 14) could 
not perceive the diference of use between VIPBoard and a 
traditional screen-reader keyboard. They mistakenly attrib-
uted the perceived diference of performance to the varying 
of their absolute touch ability. This result suggested that 
VIPBoard was consistent with their familiar typing method 
and could be mastered with little learning. 
In the remainder of this paper, we frst review related 

works. Then we give an introduction to the design of VIP-
Board. After deriving a general touch model from a pilot 
study, we test and analyze the performance of VIPBoard and 
the traditional screen-reader keyboard through a user study. 
We conclude the paper by discussing the limitations and 
future work. 

2 RELATED WORK 

We will frst introduce touch-based input methods used in 
modern smart keyboards which are mostly designed for 
sighted users, discuss whether these methods can be used 
for BVI users, then existing text entry methods designed for 
BVI users. 

Word-level Smart Input Methods 
Auto-correction methods have been widely used in modern 
word-level smart input methods [37, 42] (or sentence-level 
method [38]). These methods usually decode a user’s input 
after he/she fnishes all the touches by a delimiter (e.g., space), 
and provide a list of candidates with the highest probabilities 
according to the user’s input. Goodman et al. [21] were the 
frst to combine a touch model and a language model to 
reduce efect of users’ input noise. This method has already 
been extended to numerous contexts, such as diferent hand 
postures [19], mobility [18] and screen size [42]. However, to 
our knowledge, it has not been used in text entry methods for 
BVI users. Kristenson and Zhai [25] presented an alternative 
pattern matching method to identify the most likely words 
corresponding to the user’s tap sequences. 

Though mostly used by sighted users, some of the works 
adopting word-level auto-correction methods [26, 35, 44] 
were also designed or could be used under eyes-free scenario 
by leveraging muscle memory. However, they were not suit-
able for BVI users because BVI users will confrm each letter 
is correctly entered during typing due to the high cost of 
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correcting errors and the audio feedback. These reasons in-
spired us to apply a character-level auto-correction method 
into a soft keyboard for BVI users. 

Character-level Smart Input Methods 
Character-level smart input methods beneft users by per-
forming prediction each time a character is entered. These 
techniques usually change the keyboard layouts by each 
touch according to the predicted probabilities (visibly or 
invisibly): Fluctuating Optimal Character Layout [10] rear-
ranges the layout so that the most likely next characters 
are closer to the cursor to minimize KSPC — the average 
number of keystrokes per character. The Fisheye keyboard 
[33] and BigKey [5] expand the next keys for a better target 
acquisition. Key-target resizing [8, 22] algorithms change 
the underlying target area of each key according to the cal-
culated probabilities. 
Explicitly changing keyboard may afect sighted users: 

they need cost to familiarize a new layout [10], or they may 
change their behavior according to the layout [5, 33]. Gu-
nawarana et al. [22] emphasized the negative efect of overly 
aggressive keyboard adaption and proposed an anchored 
method to solve the problem. However, the problem does 
not exist for BVI users because they cannot directly “see” the 
changes. Therefore, layout adaption is possible on soft key-
boards for BVI users. Besides, diferent from those existing 
prediction methods that beneft next touches after one touch 
is complete, it is also worthwhile to explore the character-
level auto-correction method which corrects input errors 
within the current touch. 

Text Entry for Visually Impaired Users 
A traditional way of BVI users using soft keyboards is to use 
it under screen reader system, which is low efcient (0.66 
WPM in [11], 1.32 WPM in [32]). The main challenge for BVI 
users to enter text using soft keyboard on smartphones is 
the difculty of precise targeting [11]. Therefore, researchers 
have developed diferent techniques to address this problem. 
One direct way of simplifying the targeting problem is 

to keep the number of targets low, place them at easy-to-
reference locations based on the physical device, and keep 
targets static. Sánchez et al. [34] put 9 numpad-like virtual 
buttons on the screen. Inputting one character required mul-
tiple times of tapping. BrailleType, by Oliveira et al. [31], 
divided the screen into 6 large buttons and allowed users 
to enter the text by Braille encoding. These methods could 
provide more accurate results yet the efciency might be low 
because of the low target number. 

Gesture-based approaches are alternative solutions as they 
do not require the user to hit any targets. These methods 
usually allow users to navigate through all the characters 
with diferent layouts. For example, the navigation layout 

could be 3 diferent pie-menus [40], alphabet separated by 
vowels [20] or 8 group of keys in a radial arrangement [11]. 
Braille encoding texts could also be entered by simple ges-
tures [6, 14, 17, 28, 29]. The main cost of these methods was 
the cost of learning gestures and the long time used to navi-
gate through the targets. 
Besides, hardware-based methods were also developed 

to assist targeting for BVI users, e.g., by using external de-
vices [15, 24] or haptic feedback [12]. The requirement for 
special devices made these methods neither pervasive nor 
convenient for daily use. 
To our knowledge, these methods were all aimed at im-

proving the absolute ability to acquire every single charac-
ter with new, diferent interfaces. However, optimization 
based on traditional keyboards were not considered, nor 
modern smart correction methods. VIPBoard flls the gap by 
augmenting a screen-reader keyboard with character-level 
auto-correction methods to reduce the efect of input noise 
produced by BVI users. 

3 DESIGN OF VIPBOARD 

In this section, we will frst introduce how BVI users use VIP-
Board. Then the two main parts of VIPBoard: a Bayesian al-
gorithm to predict the user’s intention and a layout adaption 
strategy. The prediction algorithm predicts a user’s intention 
based on his/her input history and a pre-defned corpus. The 
adaption strategy will adjust the keyboard layout according 
to the prediction result to provide consistent interactions for 
BVI users. We also present some implementation details in 
the adaption process, which are important for the strategy 
to provide a better experience for BVI users. 

Interaction 

The interaction of VIPBoard is based on traditional screen-
reader keyboard, which aims at minimizing the learning 
efort of users. A screen reader provides audio feedback to a 
BVI user by reading out the UI element’s name touched by 
the user. The user confrms the selection by lifting up his/her 
fnger up1. 
The process of inputting one character on a traditional 

screen-reader keyboard is consistent with the screen reader, 
which can be divided into three phases: 

(1) Attempt (touchdown). The user puts his/her fnger 
on the keyboard, and the screen reader reads out the 
key name where the touch point locates (Figure 1a). 

(2) Calibration (touchmove, optional). If the frst key 
read out by the screen reader is the intended one, this 
step is skipped. Otherwise, the user needs to move 
his/her fnger around to fnd the target key according 

1Alternative methods include by performing a double-tap or by tapping 
with another fnger without lifting the fnger on the screen. 
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to the keyboard layout and audio feedback (Figure 1b). 
The audio feedback is provided each time the touch 
point enters a new key boundary. 

(3) Confrmation (touchup). The user lifts his/her fnger 
up from the screen to input the current character. 

VIPBoard estimates the probability of characters that might 
be needed by the user each time after a touchdown event is 
observed on the screen. The system will then read out the 
predicted letter with the highest probability. By this way, the 
user does not need to perform further touch calibration and 
thus the typing speed is increased (Figure 1c). To achieve 
consistent interactions with the traditional keyboard, the 
user should still be able to calibrate in case of a wrong pre-
diction. VIPBoard achieves this by adapting the keyboard 
layout according to the touch location and predicted result, 
by which the relative layout of the keyboard still holds (Fig-
ure 1d). The confrm operation is the same as the traditional 
one. 

Input Prediction Algorithm 

We use a method similar to [21] to predict the most probable 
key of the input of a user. Let pos denotes the input touch 
position, pre denotes the history which has been already 
input by the user. Then for any character c , we can calculate 
the probability of a user inputting c given pos and pre by: 

P(pos, c, pre)
P(c | pos, pre) = 

P(pos, pre)
P(pos | c, pre)P(c, pre)

= 
P(pos, pre)

∝ P(pos | c, pre)P(c, pre) (1) 
In equation 1, P(c, pre), which can be referred to as lan-

guage model, is calculated by a pre-defned corpus, which is 
similar with [43]: Í 

W ∈S (pre)∧Wn+1=c P(W )
P(c,pre) = Í (2) 

W ∈S (pre) P(W )

where n is the length of pre and S(pre) denotes all the words 
W that P(pre |W1W2 · · ·Wn ) > 0. In other words, S(pre) de-
notes all the words have a prefx pre . P(pos |c, pre), which 
can be referred to as touch model, refects the input noise 
of the user. Like most previous work [7, 21], we treat each 
touch independently, so it can be simplifed as P(pos |c) and 
calculated by a bivariate Gaussian distribution. After calcu-
lating P(c |pos,pre) for all the characters, we can fnd the one 
with the maximal probability as the intention of the user. 

Layout Adaption Strategy 

The main purpose for layout adaption is to hold a consis-
tent interaction and layout with the traditional screen-reader 
keyboard. A particular advantage for this step is that users 

can still perform calibration in case of a wrong prediction, 
thus can input any character on the keyboard. The layout 
adaption strategy was adopted after touchdown event trig-
gers and a most intended key was calculated by the previous 
algorithm. The layout restores to the initial one after a char-
acter has been confrmed (i.e. a touchup event triggers). This 
design is to avoid the overly aggressive adaption of the lay-
out [22], which may result in some ultra small keys that are 
hard to be input by the user. The main steps can be described 
as follows: 
Step 1: Calculate an ofset vector between touch position 

and the most intended key in the initial layout. The ofset 
vector is the minimal path from the key boundary to the 
touch position. 
Step 2: Translate the most intended key to a new position 

according to the ofset vector, after which the touch position 
is contained by the new key boundary. 
Step 3: Translate and scale other keys relatively to the 

most intended key and make sure all the keys are in the 
keyboard boundary. 
Step 4: If there exist keys which are too small 2, retain 

the initial layout and read out the key corresponding to the 
touch position. Otherwise, adopt the new layout and read 
out the most intended key. 

Figure 2a shows an example of an adapted new layout as 
well as the initial layout. 

Figure 2: An example of the adapted keyboard layout. (a) The 
ofset of the predicted most intended key (O) and the scale 
of other keys (e.g., P). (b) Unoptimized ofset vector (dx ,dy)

′and optimized ofset vector (dx ,dy ′). 

Further Optimization Details 
While implementing the adaption strategy, we found some 
important details which could improve the experience of the 
user during pilot study: 

(1) If a second touch lies in the nearby area of the previous 
input key in the previous layout, then the same layout should 
2According to our pilot study, if a key is smaller than half of the original 
key size, either in width or height, it would be easily skipped during fnger 
movement. 

CHI 2019 Paper CHI 2019, May 4–9, 2019, Glasgow, Scotland, UK

Paper 517 Page 4



be used. This design is based on the observation that most 
users locate a nearby key according to the position of the 
last touch. So it may raise confusion to the users if the same 
location returns diferent key names. In our prototype, we 
empirically set this “nearby area” to the same key area of the 
last touch according to our pilot study. 
(2) To minimize the adaptation of the keyboard, the opti-

mal choice of the ofset vector is between the boundary of 
the original key and the touch point. However, this would 
put the touch point on the boundary between keys after the 
adaption, which would cause the hit keys (and the corre-
sponding audio feedback) to switch frequently due to fnger 
jitter. To avoid this problem, we deliberately move the touch 
point more into the key region by about 20% key size to 
generate an optimized ofset vector (Figure 2b). 

(3) When scaling keys in the keyboard, the widths and the 
heights of the keys will change. If the change of a particular 
key is small, it is more unlikely for the users to feel the 
diference and a more consistent experience can be provided 
when exploring over this key. We assume that the intended 
key is not too much far from the predicted one, so we applied 
a gradient scale strategy: the keys near the predicted key 
scale less than those far away from the key. 

4 STUDY 1: DERIVING TOUCH MODEL 

We conducted a pilot study to collect touch data of BVI users. 
These data can not only be used to ft a touch model but also 
help us understand the touch behavior of BVI users. We will 
use the ftted model to implement our prototype. 

Participants and Apparatus 
We recruited 8 BVI users (4 males, 4 females) to input words 
using an interface the same as the traditional keyboard. The 
average age of the participants was 23.8 (SD=1.4). 4 of the 
participants were totally blind, while the other 4 were with 
very low vision. All the participants used screen-reader key-
boards in their daily lives and knew the approximate position 
of each key on the QWERTY layout. Each participant was 
compensated $8 for the study. 

A Huawei P20 phone [4] with a 5.8 inch touchscrren run-
ning Android 7.0 was used in this study. The keyboard was 
implemented in an Android app for full control. The key-
board layout was the same as Gboard[3]. We used Google 
TTS engine to convert texts to speech output. The experi-
ment setup and the interface are shown in Figure 3. 

Design and Procedure 

After the introduction of the system, the participant was 
asked to familiarize with the size and layout of the keyboard 
as well as the TTS engine output for about 3 minutes. Then 
each participant was asked to input 100 words with the key-
board. For each word, the system frst read out the whole 

Figure 3: (a) Experiment setup. (b) The interface of the study. 

word, then the spelling of the word. The participants were 
asked to enter the word at the location “as accurately as the 
perceived locations of the target keys”. If the touch location 
was beyond the border of the keyboard interface, the system 
would read out “out of range” and the data would not be 
recorded in this case. Otherwise, the system would give a 
correct audio feedback no matter where the touch location 
was. The target characters and the corresponding touch lo-
cations were recorded. The participants could restart the 
task word if they made a mistake in the spelling. We would 
drop the data containing misspelling to ensure the validity 
of labeling. 

The 100 words used in the study were selected from high-
frequency words in ANC corpus [2]. They were selected to 
contain sufcient number of all the 26 characters. 

Results 
We removed the outliers which were 3 keys away from the 
target key center. In total, we get 5383 touch points from 
26 diferent characters. The average input speed was 20.83 
(SD=3.29) WPM, which was much higher than the normal 
input speed of BVI users [11, 32]. The diference was mainly 
due to the correct audio feedback which removed the calibra-
tion time while typing. The average error rate, which was 
calculated by the boundary of each key was 62.8% (SD=13.2%). 
We also found that 90% of users’ input errors occured within 
a range of 2.5 key widths. These results are all consistent 
with the results in [30]. The extremely high error rates indi-
cate an auto-correction method is necessary for BVI users to 
improve their input performance. 
We also ftted the data to 26 bivariate Gaussian distribu-

tions, which are shown in Figure 4. While the key width 
is 6.39 mm and key height is 10.07 mm, the average ofset 
was -0.90 mm for X axis and 3.37 mm for Y axis3. This result 
indicates that users tend to touch shift towards the bottom 

3Positive directions are right for X axis and bottom for Y axis. 
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Figure 4: The ftted general touch model. The ellipses show 1 
standard deviation of the distribution. The arrows show the 
ofset from each key center to the corresponding distribu-
tion center. 

of the keyboard. The average standard deviation was 2.92 
mm for X axis and 6.47 mm for Y axis, which means more 
input noise on Y direction than X direction. 

5 STUDY 2: PERFORMANCE EVALUATION 

We conducted a user study to evaluate the text entry perfor-
mance of VIPBoard. In the evaluation, we frst implemented 
a prototype of VIPBoard, which supports both English and 
Chinese input. Then we conducted a within-subjects study 
to compare the performance between VIPBoard and the tra-
ditional keyboard. 

Participants 
We recruited 14 visually impaired students (7 males, 7 fe-
males) from a special education college, with an average age 
of 23.7 (SD = 1.1). 8 of them were totally blind, while the oth-
ers were with very low vision. None of them attended Study 
1. They were reported to have used touchscreen smartphones 
for an average of 4.9 years (SD=1.6). All the participants were 
familiar with QWERTY layout and knew the approximate 
position of each key. They were native Chinese and knew the 
spell of English words. Each participant was compensated 
$30. 

Apparatus 
The device used in the evaluation was the same as in Study 
1. The experiment interface was similar as in Figure 3b. We 
implemented both English and Chinese input using the same 
interface. Both keyboards use Google TTS engine to convert 
text to voice output. For English input, we use the 50,000 
words with the highest frequency in ANC corpus [2] as our 
corpus for VIPBoard. For Chinese input, we use Pinyin4, 
a phonetic spelling system in Roman characters to input 

4https://en.wikipedia.org/wiki/Pinyin 

Chinese characters. The corpus of Chinese words and the 
Pinyin decoding system is transferred from Google Pinyin 
IME [1]. We used the general touch model collected in Study 
1. 

After interviewing a group of BVI users, we designed 
and implemented a set of gesture interactions which were 
acceptable for them. Users could perform a gesture anywhere 
on the screen when using either keyboard: 

• Swipe left: backspace 
• Swipe right: space/confrm 
• Swipe up/down: navigate among candidate lists (for 
Chinese input only, as there exist many homophones 
with the same Pinyin string) 

• Swipe left with two fngers: delete all input contents 
• Swipe up with two fngers: read out all input contents 

Experiment Design 

We used a within-subjects, two-factors design (session and 
technique) to test the performance of VIPBoard. Participants 
were asked to enter for 4 sessions with 5 phrases in each 
session, with both traditional keyboard and VIPBoard, in 
both English and Chinese. The phrase set for English input 
was T-40 set from [41], phrases for Chinese input were those 
with suitable length parsed from [13]. In total, 14 participants 
× 20 phrases/condition × 2 keyboards × 2 languages = 1120 
phrases were entered. 

Figure 5: Examples of English, Chinese test phrase and the 
corresponding pinyin string of the Chinese phrase. 

Procedure 

After the introduction of the basic use and interaction of 
the keyboard, participants were frst asked to entering 2-4 
sentences to familiarize with the interaction, keyboard size 
and the TTS engine. We then informed them that they would 
use two keyboards which shared the same interaction de-
sign without telling them the order they would use. Then 
each participant was asked to enter phrases under diferent 
conditions. The order of using diferent keyboards was coun-
terbalanced among all the participants. Participants were 
asked to rest for at least 2 minutes during diferent sessions. 
After fnishing all the phrases, each participant was asked to 
give subjective feedback for both two keyboards through a 
questionnaire and an interview. After they had fnished the 
study and had given comments on the diferences between 
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two keyboards, we would tell them the order of keyboards 
they used. 
Participants were asked to enter the required text “as 

quickly and accurately as possible” with their most comfort-
able postures. Users were allowed to correct errors during 
typing or leave them uncorrected if they wanted. Each phrase 
was entered word by word. When entering each phrase, the 
system will frst read out the whole sentence for the user, 
and then split the current task into words. After the user 
confrmed the word (which was done by a right swipe), the 
system will switch to and read out the next word. The par-
ticipant could swipe down with two fngers to re-listen to 
the current task. 

6 RESULTS 

Measurements 
Except for traditional text entry performance measurements 
(e.g., speed, error rate and learning efect), we are also inter-
ested in the following measurements: 

• Miss rate (MR). Miss rate is defned as the ratio of 
touches which miss the target at the attempt phase. Ac-
cording to the interaction analysis in Section 3, lower 
MR indicates that fewer touches need the calibration 
phase, which results in less input time and higher input 
speed. Lower MR can also provide more confdence 
and a more smooth input experience for the users. This 
metric is exactly where the optimization of VIPBoard 
aims at. 

• Time distribution. Time distribution can refect the 
time cost in diferent parts of typing and give us a 
better understanding of the main diference of typing 
speed between VIPBoard and the traditional technique. 

In the following analysis, we will consider English and Chi-
nese input separately with two factors: session and technique. 
After checking the pre-conditions, we will conduct all the sig-
nifcance testing except for the subjective ratings by repeated 
measures ANOVA (RM-ANOVA). 

Overall Speed 

We measured text entry speed in words per minute (WPM), 
which was calculated as follows [27]: 

|T | − 1 1 
WPM = × 60 × (3)

S 5 

where |T | is the length of the fnal input string and S is 
the elapsed time in seconds from the frst to the last touch 
in a trial. For Chinese input, we use the pinyin string as the 
fnal input string (See Figure 5 as an example). The text entry 
speed was calculated word by word without considering the 
time of selecting candidates. 

Table 1: Average text entry speed (WPM) of two key-
boards 

VIPBoard Traditional keyboard 

English input 8.14 (SD=1.62) 7.23 (SD=1.67) 
Chinese input 8.61 (SD=2.04) 7.57 (SD=1.95) 

RM-ANOVA shows that text entry speed on VIPBoard is 
signifcantly higher than on the traditional keyboard under 
both languages (F1,13 = 23.67,p < .01 for English input; 
F1,13 = 9.51, p < .01 for Chinese input). As shown in Table 1, 
the average text entry speed by using VIPBoard was 12.6% 
(13.7%) higher than by using the traditional keyboard for 
English (Chinese) input. On VIPBoard, users typed around 5 
more characters in a minute on average. 

Overall Error Rate 

We measured character-level error rate using corrected er-
ror rate (CER) and uncorrected error rate (UER) [39]. Users 
tended to fx most, if not all, of their errors during typing, 
leaving few in the fnal transcribed string, as shown in Ta-
ble 2. No signifcant diference was found by RM-ANOVA 
bewteen CER (p = .99 for English input; p = .95 for Chinese 
input) and UER (p = .11 for English input; p = .37 for Chi-
nese input) of the two keyboards. The results showed that 
the error processing on the two keyboards was not diferent 
for BVI users. 

Table 2: Average corrected (CER) and uncorrected 
(UER) error rates of two keyboards 

VIPBoard Traditional keyboard 

CER English input 
Chinese input 

3.51% (SD=1.92%) 
4.46% (SD=2.30%) 

3.54% (SD=2.25%) 
4.48% (SD=2.60%) 

UER English input 
Chinese input 

1.30% (SD=2.36%) 
1.28% (SD=1.88%) 

1.94% (SD=2.28%) 
1.03% (SD=1.52%) 

Miss Rate 

As shown in Table 3, VIPBoard could reduce 63.0% (60.0%) hit 
errors compared with the traditional keyboard for English 
(Chinese) input. RM-ANOVA shows signifcant improvement 
under both languages (F1,13 = 152.73, p < .01 for English; 
F1,13 = 67.34,p < .01 for Chinese). We also calculated the 
miss rate of each key for both techniques, as shown in Figure 
6. From the fgures we can conclude that miss rates of VIP-
Board are all lower than those on the traditional keyboard 
except for the “q” key, which may due to the small sample 
size (less than 100) in the study. 
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Table 3: Average miss rate (MR) of two keyboards 

VIPBoard Traditional keyboard 

English input 14.2% (SD=8.10%) 32.8% (SD=12.9%) 
Chinese input 14.8% (SD=6.30%) 34.6% (SD=14.1%) 

(a) Traditional keyboard. 

(b) VIPBoard. 

Figure 6: Miss rates of each key. 

Time Distribution 

We divided the time of inputting one whole word into four 
parts: 

• Entering time. The time of entering each character, 
which starts with a touchdown event and ends with a 
touchup event. 

• Interval time. The elapsed time between two adja-
cent touches. 

• Confrm time. The time of swiping right (English 
input) or the time from navigating in the candidate list 
to swiping right (Chinese input). 

• Other time. Time of deletion and other interactions 
(e.g., swiping up with two fngers or other undefned 
gestures). 

We calculated the average time of each part when en-
tering one character, which were shown in Figure 7. RM-
ANOVA shows that entering time of VIPBoard was signif-
icantly shorter than traditional keyboard (F1,13 = 21.0,p < 
.01 for English input; F1,13 = 7.26, p < .05 for Chinese input), 
while no signifcant diference was found among other three 
parts. This result shows that VIPBoard could efectively re-
duce the average entering time, and not infuence other input 
parts at the same time. The results also indicate that there 
is possible space for more efcient accessible soft keyboard 
design in the future, such as reducing interval time. 

Figure 7: Time distribution of two keyboards. 

Learning Efect 
Speed vs. Session. We calculated average text entry speeds 
in each session, which were shown in Figure 8. RM-ANOVA 
shows a signifcant learning efect of session (F3,39 = 4.92, p < 
.01 for English input; F3,39 = 12.56, p < .001 for Chinese in-
put). Post-hoc pairwise comparison with Sidak adjustment 
showed that the text entry speeds in session 3 and 4 were sig-
nifcantly higher than session 1, which indicates that users 
could achieve a relatively high speed after practicing for only 
5-10 sentences. 

Figure 8: Average text entry speed in each session. The error 
bars show the standard deviations. 

Miss Rate vs. Session. We calculated average MRs in each 
session, which were shown in Figure 9. RM-ANOVA found 
no signifcant learning efects of MR (p = .09 for English, 
p = .13 for Chinese), which indicates users could achieve a 
relatively low MR quickly after they started to use VIPBoard. 
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Figure 9: Average miss rate in each session. The error bars 
show the standard deviations. 

Subjective Feedback 

Subjective Ratings. After fnishing the text entry part, each 
participant was asked to evaluate two keyboards with a 7-
point Likert scale for mental demand, physical demand, tem-
poral demand, efort, fatigue and overall preference. The 
average scores and the standard deviations were shown in 
Table 4. Wilcoxon tests show that VIPBoard outperforms 
the traditional keyboard signifcantly among all the aspects 
(p < .01). 

Table 4: Average subjective ratings of two keyboards. 
The higher the score is, the better the keyboard is. 

VIPBoard Traditional keyboard 

Mental demand 5.79 (SD=1.05) 3.79 (SD=1.37) 
Physical demand 5.36 (SD=1.01) 4.00 (SD=1.04) 
Temporal demand 5.79 (SD=0.89) 3.79 (SD=1.81) 

Efort 5.64 (SD=0.84) 3.71 (SD=1.86) 
Fatigue 5.57 (SD=0.65) 3.36 (SD=1.34) 

Overall preference 6.14 (SD=0.77) 3.36 (SD=1.28) 

Perception of Layout Adaption. It is worth noticing that lay-
out adaption in VIPBoard is “transparent” to BVI users be-
cause they only rely on the audio feedback to complete the 
input. Current adaption strategy is designed for consistency 
of use and the visualization is for demonstration only. Al-
most all of the participants (12/14) could feel the reduction 
of miss rate, but they could not recognize the role of our 
algorithm. In their cognition, they felt they “touched more 
accurately” on one keyboard with the same interactions. 
However, there were few very skilled participants (1/14) 

who could perceive the changing boundary of keys among 
diferent touches. The change may cause confusion of the 
key location for these users, which may slightly infuence 

the confdence and then the typing performance of them. 
However, according to the interview, he could adapt to the 
interface and overcome the discomfort very quickly, so we 
still claim that VIPBoard is a good solution for BVI users to 
enter text on a soft keyboard. A further long-term study may 
be needed to study the change of the user’s mental model 
due to layout adaption, which we leave as future work. 

Qalitative Feedback. During interview, participants showed 
highly preference for the consistent interaction design. 

“The keyboard is very easy to learn and use, I nearly cannot 
feel the diference between the two keyboards except for the 
high touch accuracy when using VIPBoard.” (P3, P8) 
The gesture interactions have also been proved as a suit-

able design for BVI users. 
“I love the gestures designed for the keyboards. They are 

convenient and can avoid misoperations.” (P7, P9) 
Besides, participants showed high expectation and strong 

willingness to use VIPBoard in their everyday lives. 
“I hope VIPBoard can be integrated into commercial input 

methods with more encoding supported, like Shuangpin5 . I can 
not wait for using it on my own phone.” (P1, P3, P5, P10, P12) 

7 PERFORMANCE ANALYSIS 

In this section, we will analyze the factors which can afect 
the fnal performance of our algorithm. 

Efect of Language Model 
We found our algorithm highly relies on the language model. 
We calculated the number of available choices for the next 
character after a part of the word has already been input 
according to the corpus we used, which was shown in Figure 
10a. We can fnd a sharp drop of the number of choices along 
with the input length: after inputting 2 characters, an average 
of 17.5 characters could be the next input one; after inputting 
4 characters, only 3.6 characters could be the next one. With 
longer input, the number decreased to under 2. 

We further analyze the result by considering the distribu-
tion of the available characters on the keyboard. Recall that 
we found that most users’ input errors were within 2.5 key 
widths in Study 1. Thus we calculated the average number 
of available characters within 2.5 key widths of the target 
key center in Figure 10b. The results here are much smaller 
than that in Figure 10a: after inputting 4 characters, there are 
only 0.8 keys available around the target key within 2.5 key 
widths, where about 85% of the words were still not fnished 
at this time. This result indicates that our algorithm could 
get a relatively accurate prediction result without regard to 
the accuracy of the touch model. We also collect each par-
ticipant’s personalized touch model according to their input 
5Another phonetic-based Chinese input method, see https://en.wikipedia. 
org/wiki/Chinese_input_methods_for_computers#Shuangpin. 
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(a) (b) 

Figure 10: (a) Number of available choices for next input vs. 
input length. (b) Number of available keys within 2.5 key 
widths of the target key vs. input length. The shadow areas 
show the percentage of words longer than the input length 
on the right y-axis. 

data and ran a simulation using the personalized touch model 
to check whether the miss rate would reduce compared with 
the general model results. The result, which showed nearly 
no improvement, also confrmed this analysis. 

Efect of Touch Accuracy 

We are also interested in how a user’s touch accuracy afect 
the performance after using VIPBoard. We thus use the miss 
rate on the traditional keyboard as the measurement of touch 
accuracy. Higher miss rate indicates that the user’s touches 
are with more input noise. We calculated the miss rate dif-
ference between the traditional keyboard and VIPBoard to 
measure the gain by using VIPBoard. A higher diference 
indicates that the user can beneft more from VIPBoard. We 
calculated these two values for all the 14 participants under 
2 languages and plotted them in Figure 11. 

Figure 11: Miss rate diference vs. touch accuracy. 

From Figure 11, we found a relatively strong linear pos-
itive correlation between the performance gain and touch 
accuracy. We conducted a linear regression and plot the ft-
ted line in the fgure (R2 = 0.85). Thus we can conclude that 
users with lower touch accuracy can beneft more from using 
VIPBoard. 

8 LIMITATIONS AND FUTURE WORK 

In this section, we will analyze some limitations in the work, 
which may also help us improve VIPBoard in the future. 

In study 2, we recruited only 14 participants to evaluate 
text entry performance. The small amount is due to the high 
requirements of BVI participants: they were required to be 
familiar with screen readers, QWERTY layout, both English 
and Chines pinyin input. However, a wide range of diferent 
touch accuracy (miss rate from 17.4% to 67.6%, as shown in 
Figure 11) was covered by these participants, and the results 
were consistent among all the participants. This indicates 
that the results in this paper are convincing and universal. 
Currently, we applied a unigram language model and a 

general touch model in VIPBoard. However, it has been 
proved that a more detailed language model (e.g., n-gram 
model [23], personalized language model [16, 36]) could pro-
vide better performance for text entry tasks [23, 42]. Also, 
auto-completion may further improve the performance. We 
will consider these optimizations in the future. 

Non-alphabetic characters (e.g., numbers, punctuations) 
are also important for text input and can be easily added in 
VIPBoard. We can add a symbol keyboard to enter special 
characters and use another gesture (e.g., swipe down with 
two fngers) to switch between diferent keyboards. 

9 CONCLUSION 

In this paper, we propose VIPBoard, a smart keyboard for 
BVI users which applies a character-level auto-correction 
algorithm to augment screen-reader keyboard. VIPBoard pre-
dicts the most probable character of users’ intention, which 
aims at reducing the calibration time of BVI users. Then we 
designed a layout adaptation strategy, which provides con-
sistent interactions and experience with traditional screen-
reader keyboards. In an evaluation study of 14 BVI users, we 
found that VIPBoard could improve text entry speed by 12.6%, 
and reduce the miss rate of each touch by 63%. Users could 
master VIPBoard after a small amount of practice and they 
provided positive feedback compared with the traditional 
keyboard. VIPBoard indicates that adding auto correction to 
a screen-reader keyboard, though only at the character level, 
improved the performance of text entry and was widely wel-
comed by BVI users. We hope VIPBoard can bring smartness 
to screen-reader soft keyboards and beneft BVI users. 
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